Annex C
(informative)
Degree of obligation of the provision
The provisions are marked corresponding to their degree of obligation:
- RQ : requirement ;
- RC : recommendation ;
- PE : permission ;
- PO: possibility and eventuality;
- ST: statement.
![]() |
4.1.1 | RQ | 7.2.7 | RC | 8.6.3.1 | RQ | |
4.1.2 | RC | 7.2.8 | RQ | 8.6.3.2 | RQ | ||
4.1.3 | RQ | 7.3.1 | RQ | 8.6.3.3 | RQ | ||
4.2.1 | RQ | 7.3.2 | RQ | 8.6.3.4 | RQ | ||
4.2.2 | RQ | 7.4.1 | RQ | 8.6.3.5 | ST | ||
4.2.3 | RQ | 7.4.2 | RC | 8.6.3.6 | ST | ||
5.1.1 | RQ | 7.4.3 | RC | 8.6.3.7 | RQ | ||
5.1.2 | RQ | 7.4.4 | RQ | 8.7.1 | ST | ||
5.1.3 | RQ | 7.4.5 | RQ | 8.7.2 | RQ | ||
5.1.4 | RQ | 7.5.1 | RC | 9.1.1 | RC | ||
5.1.5 | RQ | 7.5.2 | RQ | 9.1.2 | RQ | ||
5.2.1 | RQ | 7.5.3 | RQ | 9.2.1 | RQ | ||
5.2.2 | RQ | 7.5.4 | RQ | 9.2.2 | RQ | ||
5.2.3 | RC | 7.5.5 | RQ | 9.3.1 | RQ | ||
5.2.4 | RC | 8.1.1 | RQ | 9.3.2 | RQ | ||
6.1.1 | ST | 8.2.1 | RQ | 9.3.3 | RC | ||
6.1.2 | RQ | 8.2.2 | RQ | 9.3.4 | RC | ||
6.1.3 | RQ | 8.2.3 | RQ | 9.3.5 | RC | ||
6.1.4 | RQ | 8.3.1 | RQ | 9.3.6 | RC | ||
6.1.5 | RQ | 8.3.2 | RQ | 9.3.7 | RQ | ||
6.1.6 | RQ | 8.4.1.1 | RQ | 9.3.8 | RQ | ||
6.2.1 | RQ | 8.4.1.2 | RQ | 9.4.1.1 | RQ | ||
6.2.2 | ST | 8.4.1.3 | ST | 9.4.1.2 | ST | ||
7.1.1 | RC | 8.5.1 | RQ | 9.4.1.3 | RQ | ||
7.1.2 | RC | 8.5.2 | RQ | 9.4.1.4 | RC | ||
7.1.3 | RQ | 8.5.3 | RQ | 9.4.2.2 | RQ | ||
7.1.4 | PE | 8.6.1.1 | ST | 9.5.1 | RC | ||
7.1.5 | RQ | 8.6.1.2 | RQ | 9.5.2 | RQ | ||
7.1.6 | RQ | 8.6.1.3 | RQ | 9.6.1 | RQ | ||
7.1.7 | ST | 8.6.1.4 | RQ | 10.1.1 | RQ | ||
7.1.8 | ST | 8.6.1.5 | RQ | 10.1.2 | RQ | ||
7.2.1 | RQ | 8.6.2.1 | RQ | 10.2.1 | RQ | ||
7.2.2 | RC | 8.6.2.2 | RQ | 11.1.1 | ST | ||
7.2.3 | RQ | 8.6.2.3 | RQ | 11.1.2 | RQ | ||
7.2.4 | RC | 8.6.2.4 | RQ | 11.2.1 | RQ | ||
7.2.5 | RQ | 8.6.2.5 | RQ | 11.3.1 | RC | ||
7.2.6 | RQ | 8.6.2.6 | RQ | 11.4.1 | RC | ![]() |
Bibliography
[1] Baker, S. (2000), Deformation behaviour of lime/cement column stabilized clay. Doctoral Thesis, Chalmers Univ. of Technology, Gothenburg.
[2] Broms, B. (1991), Stabilisation of soil with lime columns. In Foundation Engineering Handbook, 2nd Edition, van Nostrand Reinhold, New York, Chapter 24, 833–855.
[3] Broms B. (1992), Lime stabilisation. In Ground Improvement. (ed. M. P. Moseley), Blackie Academic & Professional, 65–99.Bruce, D. A., Bruce, M. E. & DiMillio, A. F. (2000). Deep mixing: QA/QC and verification methods. Grouting-Soil Improvement Geosystems including Reinforcement, Finnish Geotechnical Society (Editor Hans Rathmeyer), pp. 11–22.
[4] Carlsten, P. (1995), Lime and lime/cement columns. SGF Rapport 4:95E.
[5] CDIT (2002), Deep Mixing Method — Principle, Design and Construction — Coastal Development Institute of Technology, Japan.
[6] EuroSoilStab (2002). Development of design and construction methods to stabilise soft organic soils. Design guide soft soil stabilisation. CT97-0351. Project No. BE-96-3177. European Commission. Industrial & Materials Technologies Programme (Brite-EuRam III). Brussels
[7] Hoikkala, S., Leppänen, M. & Lahtinen, P. (1997). Blockstabilization of peat in road construction. Proc. 14th ICSMFE, Hamburg, Vol. 3, pp.1693–1696.
[8] Kitazume, M., Okane, K. & Miyajima, S. (2000). Centrifuge model tests on failure envelope of column type DMM improved ground. Soils and Foundations, Vol. 40, No. 4, 43–55.
[9] Kitazume, M., Omine, K., Miuyake, M. & Fujisawa, H. (1996). Japanese Geotechnical Society Technical Committee Report — Japanese design procedures and recent DMM activities — Grouting and deep mixing. Proc. 2nd Int. Conf. Ground Improvement Geosystems, Balkema 2: 925–930.
[10] Kivelö, M. (1998). Stabilization of embankments on soft soil with lime/cement columns. Doctoral Thesis, Royal Institute of Technology, Stockholm.
[11] Larsson, S. (2003). Mixing process for ground improvement by deep mixing. Doctoral. Thesis, Royal Institute of Technology, Stockholm.
[12] Matsumoto, J., Ohbayashi, J. Harada, K., Tsuboi, H. & Matsui, T. (1998). Application examples of some innovative ground improvement techniques developed in Japan. Proc. 2nd Int. Conf. on Ground Improvement Techniques, pp. 339–346.Mohrmann, Chr. (1994). Dammsanierung mit dem Deep-Soil- Mixing Verfahren in den USA (after Walker, A. D. “DSM saves the dam”, Civil Engineering, ASCE, Vol. 64, No. 12, 48–51).
[13] Porbaha, A. (2000), State-of-the-art in deep mixing technology — design considerations. Ground Improvement 4, 111–125.
[14] Porbaha, A. (2001), Effect of installation on quality of deep mixed soil cement columns. Proc. of Soil Mixing Seminar at Deep Foundation Institute, Clayton, Missouri, 95–109.
[15] Porbaha, A., Tanaka, H. & Kobayashi, M. (1998), State-of-the-art in deep mixing technology, Part 2 : Applications. Ground Improvement 2, No. 3, 125–139.
[16] Porbaha, A., Shibuya, S. & Kishida, T. (2000), State-of-the-art in deep mixing technology — Geomaterial characterization of deep mixing. Ground Improvement 4, No.3, 91–110.
[17] Porbaha, A., Raybaut, J. L. & Nicholson, P. (2001), State-of-the-art in construction aspects of deep mixing technology. Ground Improvement 5, No. 3, 123–140.
[18] Saitoh, S., Suzuki, Y., Nishioka, S. & Okumura, R. (1996). Required strength of cement improved ground. Grouting and Deep Mixing. Proc. of IS-Tokyo, 2nd Int. Conf. Ground Improvement Geosystems, Vol 1. pp. 557–562.
[19] Sakai, S., Takano, S. & Ogawa, K. (1996), Consideration on the target strength of deep mixing methods. Proc. 31st Japan National Conf. on Geot. Engng, 131–132.
[20] Sarhan, A. & Pampel, A. (1999). Optimierung des Fräs-Misch-Injektionsverfahren (FMI) unter erdstatischen Gesichtspunkten. Geotechnik 22, No. 4.
[21] SGF Rapport 2:2000, Kalk- och kalkcementpelare. Vägledning för projektering, utförande och kontroll (Lime and lime/cement columns. Guidance for projecting, execution and control). Swedish Geotechnical Society.
[22] Tanaka, Y., Tsuboi, H., Yamamoto, M. Harada, K. & Matsui, T. (2002). Innovative ground improvement technology in Japan. Proc. 6th Int. Symp. on Environmental Geotechnology and Global Sustainable Development (to be published).
[23] Terashi, M. (1997). Theme lecture : Deep mixing method — Brief state-of-the-art. Proc. 14th Int. Conf. Soil Mech. Found. Engng, hamburg, Vol. 4, pp. 2475–2478.
[24] Terashi, M. (2001), Development of deep mixing in the past quarter century. Material Science for the 21st Century, Vol. A, 180–193. The Society of Material Science, Japan.
[25] Terashi, M. & Tanaka, H. (1981), Ground improvement by deep mixing method. Proc. 10th Int. Conf. Soil Mech. Found. Engng, Vol. 3, 777–780.Terashi, M. & Tanaka, H. (1983), Settlement analysis for deep mixing method. Proc. 8th European Conf. Soil Mech. Found. Engng, Vol. 2, 955–960.
[26] Terashi, M. (2001), Development of deep mixing in the past quarter century. Material Science for the 21st century, Vol. A, 180–193. The Society of Material Science, Japan.
[27] US Department of Transportation (2000), An Introduction to the Deep Soil Mixing Methods as used in Geotechnical Applications. Publication No. FHWA–RD–99–138, Federal Highway Administration.
[28] Wildner, H., Kleist, F. & Strobl, Th. (1999). Das Mixed-in-Place-Verfahren für permanente Dichtungswände im Wasserbau. Wasserwirtschaft 89, No. 5.
[29] EN ISO 9000, Quality management systems — Fundamentals and vocabulary (ISO 9000:2000)